Algorithm design strategies

Many successful algorithms are based on a similar technique

Most well-known are:

- Exhaustive Search
- Greedy Approach
- Divide and Conquer
- Dynamic Programming
- Iterative Improvement

Main algorithm design strategies

- **Exhaustive Computation.** Generate every possible candidate solution and select an optimal solution.
- *Greedy*. Create next candidate solution one step at a time by using some greedy choice.
- **Divide and Conquer.** Divide the problem into non-overlapping subproblems of the same type, solve each subproblem with the same algorithm, and combine sub-solutions into a solution to the entire problem.
- **Dynamic Programming.** Start with the smallest subproblem and combine optimal solutions to smaller subproblems into optimal solution for larger subproblems, until the optimal solution for the entire problem is constructed.
- Iterative Improvement. Perform multiple iterations of the algorithm, at each iteration moving closer to the optimal solution, until no further improvement is possible.

Main algorithm design strategies

- Exhaustive Computation
- Greedy Algorithms
- Divide and Conquer Algorithms
- Dynamic Programming
- Iterative Improvement

There are many more design techniques

Many successful algorithms are designed using the combination of several techniques

There are also surprising interesting solutions based on original insights - which do not use any of these strategies

Main algorithm design strategies

- Exhaustive Computation
- Greedy Algorithms
- Divide and Conquer Algorithms
- Dynamic Programming
- Iterative Improvement

Thus, this classification should be used just for inspiration and not to constrain your creativity by forcing you to stay within a certain paradigm

Main design strategies

- Exhaustive Computation. Generate every possible candidate solution and select an optimal solution.
- **Greedy.** Create next candidate solution one step at a time by using some greedy choice.
- **Divide and Conquer.** Divide the problem into non-overlapping subproblems of the same type, solve each subproblem with the same algorithm, and combine sub-solutions into a solution to the entire problem.
- **Dynamic Programming.** Start with the smallest subproblem and combine optimal solutions to smaller subproblems into optimal solution for larger subproblems, until the optimal solution for the entire problem is constructed.
- **Iterative Improvement.** Perform multiple iterations of the algorithm, at each iteration moving closer to the optimal solution, until no further improvement is possible.

First - the baseline technique: the Exhaustive Computation

Exhaustive Search

Brute-Force

Generate-and-Test

Exhaustive Search:

a straightforward way to solve a problem, based on the definition of the problem itself

- In many problems an optimal solution belongs to some finite set of candidate solutions
- An algorithm based on *Exhaustive Computation* generates all candidate solutions and then evaluates each candidate in turn to select an optimal solution

Enumerating all candidates: search space

When designing exhaustive algorithms we must first evaluate the size of the candidate set in order to avoid "<u>combinatorial</u> <u>explosion</u>"

- **Polynomial search space:** if the total number of candidates is polynomial in *n*, we may think of applying the exhaustive search
- Exponential search space: if the total number of candidates is exponential in *n*, we may apply the exhaustive search to very small problem sizes only: we must consider other techniques

Exhaustive algorithm consists of two parts:

- Generating all candidate solutions
- Checking each candidate solution

Generating and checking candidates **should be efficient**. Checking usually is, generating usually isn't

Example: Maximum Sublist problem

Suppose that we have a list of integers, and we want to find **a** sublist with the maximum sum.

(A *sublist* must be contiguous within the list)

We call such a sublist a *maximum sublist*

Problem instance:

What is the maximum sublist in the following list?

Maximum Sublist: real-life applications

1. Stock Analysis: suppose we have some insider information on the future stock prices of a company like Apple. We want to maximize our profit while making only <u>one</u> <u>buy</u> and <u>one sell</u> transaction to avoid suspicion.

2. Used in Bioinformatics: identify highly scored regions of sequences (Example)

3. Used in Image Analysis: identify brightest regions within the image (2D version of the problem - find the contiguous *submatrix* with the largest sum in a matrix) Example: astronomical *imaging* problem

Maximum Sublist: variations

Two variations of *maximum sublist problem* are formalized below:

Problem: maximum sublist (value)

Input: array A of n integersOutput: The sum of the sublist A[i...j] with the maximum possible value.

Problem: maximum sublist (sublist)

Input: array A of n integers

Output: A sublist A[i...j] with the maximum possible value

Maximum Sublist = Subarray

What is the maximum subarray in the following array?

Search space estimation: How many different sublists in total?

Activity 8

Exhaustive search

We start with exhaustive algorithm which evaluates the sum of all $O(n^2)$ possible sublists.

We will use this opportunity to practice writing good pseudocode that is easy to read and has no off-by-one errors.

Algorithm max_sublist1(num_list, n)

```
\begin{array}{l} \max \leftarrow -\infty \\ \text{for i from 1 to n-1:} \\ \text{for j from i+1 to n:} \\ \text{sum = 0} \\ \text{for k from i to j:} \\ \text{sum } \leftarrow \text{sum + num\_list[k]} \\ \text{if sum > max then max} \leftarrow \text{sum} \end{array}
```

return max

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n)

 $\begin{array}{c} \max \leftarrow -\infty \\ \text{for i from 1 to } \textbf{n-1:} \\ \text{for j from i+1 to n:} \\ \text{sum = 0} \\ \text{for k from i to j:} \\ \text{sum } \leftarrow \text{sum + num_list[k]} \\ \text{if sum > max then max } \leftarrow \text{sum} \end{array}$

return max

i is the start of a current sublist. So, our sublist never starts at num_list[n]!

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n)

 $\begin{array}{l} \max \leftarrow -\infty \\ \text{for i from 1 to n-1:} \\ \text{for j from i+1 to n:} \\ \text{sum = 0} \\ \text{for k from i to j:} \\ \text{sum } \leftarrow \text{sum + num_list[k]} \\ \text{if sum > max then max} \leftarrow \text{sum} \end{array}$

j is the end of a current sublist. So, we never consider sublists of length 1!

return max

Any <u>logical errors</u> in this code? Watch for *boundary* and *off-by-one* errors.

Algorithm max_sublist1(num_list, n)

```
\begin{array}{l} \max \leftarrow -\infty \\ \text{for i from 1 to } n: \\ \text{for j from i to } n: \\ \text{sum = 0} \\ \text{for k from i to } j: \\ \text{sum } \leftarrow \text{sum + num\_list[k]} \\ \text{if sum > max then max} \leftarrow \text{sum} \end{array}
```

return max

Fixed

	Algorithm max_sublist1(num_list, n)														
r	max ←	- 00													
for i from 1 to n:															
for j from i to n:															
	SU	m = 0													
	for k from i to j:							It is easy to get confused							
	$sum \leftarrow sum + num_list[k]$							about meaning of i and j							
	if sum > max then max \leftarrow sum														
r	return max														
			Loft			Diaht									
			Leit			rigiit 									
1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3

So let's replace them with left/right

Algorithm max_sublist1(num_list, n)

```
\begin{array}{l} \max \leftarrow -\infty \\ \text{for left from 1 to n:} \\ \text{for right from left to n:} \\ \text{sum = 0} \\ \text{for k from left to right:} \\ \text{sum } \leftarrow \text{sum + num\_list[k]} \\ \text{if sum > max then max} \leftarrow \text{sum} \end{array}
```

return max

Full and correct exhaustive algorithm

Running time of Algorithm 1

How many different sublists are in a list of length *n*?

• There are O(n²) sublists.

How much time does it take to evaluate the sum of each sublist with Algorithm 1?

• Summing up a sublist of length k takes O(k)-time. In the worst-case this is O(n)-time since the longest sublist has length n.

What is the total runtime of Algorithm 1?

• There are O(n²) sublists, and evaluating each sublist takes O(n)-time. Therefore, the algorithm takes O(n³)-time.

Can we do better?

Revisiting Algorithm 1

Algorithm max_sublist1(num_list, n)

 $max \leftarrow -\infty$ for left from 1 to n: for right from left to n: sum = 0for k from left to right: $sum \leftarrow sum + num_list[k] \checkmark$ if sum > max then max \leftarrow sum

return max

Look at this summation. It repeats the same computation sum = $x_1 + x_2 + x_3 + x_4$ Is immediately followed by: sum = $x_1 + x_2 + x_3 + x_4 + x_5$

We could avoid recomputing this sum at every iteration of the inner loop

Algorithm max_sublist2(num_list, n)

 $\begin{array}{l} \max \leftarrow -\infty \\ \text{for left from 1 to n:} \\ \textbf{sum = 0} \\ \text{for right from left to n:} \\ \textbf{sum} \leftarrow \textbf{sum + num_list[right]} \\ \text{if sum > max then max} \leftarrow \textbf{sum} \end{array}$

return max

This should be faster than Algorithm 1, since we got rid of the third nested loop.

What is the time complexity of Algorithm 2?

Algorithm max_sublist2(num_list, n)

 $\begin{array}{l} \max \leftarrow -\infty \\ \text{for left from 1 to n:} \\ \textbf{sum = 0} \\ \text{for right from left to n:} \\ \textbf{sum} \leftarrow \textbf{sum + num_list[right]} \\ & \quad \text{if sum > max then max} \leftarrow \textbf{sum} \end{array}$

return max

The sublists are generated in the same order as in Algorithm 1, but we apply **Optimization: avoiding recomputation between successive candidates**

Algorithm max_sublist2(num_list, n)

 $\begin{array}{l} \max \leftarrow -\infty \\ \text{for left from 1 to n:} \\ \textbf{sum = 0} \\ \text{for right from left to n:} \\ \textbf{sum} \leftarrow \textbf{sum + num_list[right]} \\ & \quad \text{if sum > max then max} \leftarrow \textbf{sum} \end{array}$

return max

The algorithm is now O(n²)

Can we do better?

Recall that in both Algorithm 1 and Algorithm 2 we generated all n² possible sublists

Is there a smaller natural set of candidate solutions?

Recall that in both Algorithm 1 and Algorithm 2 we generated all n² possible sublists

The candidate set has exactly one non-empty max sublist ending at each position of the list.

Each sublist must end at position 1, 2, 3, 4, or 5. We can generate 5 different non-empty sublists, **one for each end position**, with the maximum sum among all sublists ending at this position.

Finally, the algorithm will select the max of all candidate sums.

Exhaustive Search: optimizations

1.Avoid recomputation between successive candidates (Max-sublist 2)

2.Reduce the size of the candidate set (Max-sublist 3, Euclidean GCD)

Search space: polynomial vs. exponential

- Polynomial search space: the max sublist problem had a polynomial search space, and exhaustive search proved useful, especially after applying some optimizations techniques to bring down the degree of the polynomial
- Exponential search space: If the total number of candidates is exponential in *n*, the exhaustive search becomes not feasible especially for large values of *n*

Introducing the Thief Problem

The Thief Problem:

- There are *n* different items in a store
- Item *i* weighs w_i pounds and is worth v_i
- A thief breaks in. He can carry up to W pounds in his knapsack
- What should he take to maximize the profit of his haul?

Knapsack motivations

- Least wasteful way to use raw materials
- Selecting capital investments and financial portfolios
- Generating keys for the Merkle-Hellman cryptosystem

• ..

Exhaustive solution for the Thief Problem

- Consider every possible subset of items
- Calculate total value and total weight of each subset and discard if more than *W*
- Then choose from remaining subsets the one with maximum total value

Takes $\Omega(2^n)$ time (for generating subsets)

Knapsack Example

- item 1: 7 lbs, \$42
- item 2: 3 lbs, \$12
- item 3: 4 lbs, \$40
- item 4: 5 lbs, \$25

• W = 10

subset	total weight	total value		
Ø	0	\$0		
{1}	7	\$42		
{2}	3	\$12		
{3}	4	\$40		
{4}	5	\$25		
{1,2}	10	\$54		
{1,3}	11	infeasible		
{1,4}	12	infeasible		
{2,3}	7	\$52		
{2,4}	8	\$37		
etc				

We have to check 2⁴=16 possibilities

Enumerating all subsets of a set with *n* items

- 1. Loop from 0 to $2^n 1$
- 2. For each number get the binary representation of the number, e.g. 3 = 0011 (easy in Python: bin(n))
- Determine from the binary representation whether or not to include an item from the set, e.g. 0011 = [exclude, exclude, include, include]

This generates a *lexicographic ordering* of bits.

0	0000	{}
1	0001	{a}
2	0010	{b}
3	0011	{a, b}
4	0100	{c}
5	0101	{a, c}
6	0110	{b, c}
7	0111	{a, b, c}
8	1000	{d}
9	1001	{a, d}
10	1010	{b, d}
11	1011	{a, b, d}
12	1100	{c, d}
13	1101	{a, c, d}
14	1110	{b, c, d}
15	1111	{a, b, c, d}

Setting on different bits indicating subsets of *n=4* items

Subset generation: bottleneck of the Exhaustive Knapsack

There are more efficient ordering algorithms (see <u>paper</u>):

- Gray Codes
- Banker's Sequence

For n = 100, there are 2^{100} subsets, about 10^{30} .

Assuming a computer capable of checking 10^8 subsets per second, we would require about 10^{22} seconds to generate all subsets of n=100 items, or about 4×10^{14} years.

If we use Gray codes - the time is half of that. Does it help?

Can we do better?

Yes, see dynamic-programming

The n-Queens Puzzle

Place *n* queens on an *n*×*n* chessboard so that no two queens attack each other by being in the same column, row, or diagonal.

Example of backtracking optimization

Backtracking

a solution

Backtracking algorithm

- Construct solutions systematically by adding one component at a time
- Evaluate candidate partial solution:
 - If it can be developed further without violating problem constraints:
 - add the next element in order
 - Else
 - any remaining component does not need to be considered
 - backtrack and replace the last component of the partial solution with the next option

Three optimization techniques for Exhaustive Computation

- 1.Avoid recomputation between successive candidates (Maxsublist 2)
- 2.Reduce the size of the candidate set (Max-sublist 3, Euclidean GCD)
- 3.Eliminate non-promising candidates during the search: this technique is called backtracking (n-Queens problem)